A single-electron reducing quinone oxidoreductase is necessary to induce haustorium development in the root parasitic plant Triphysaria.

نویسندگان

  • Pradeepa C G Bandaranayake
  • Tatiana Filappova
  • Alexey Tomilov
  • Natalya B Tomilova
  • Denneal Jamison-McClung
  • Quy Ngo
  • Kentaro Inoue
  • John I Yoder
چکیده

Parasitic plants in the Orobanchaceae develop haustoria in response to contact with host roots or chemical haustoria-inducing factors. Experiments in this manuscript test the hypothesis that quinolic-inducing factors activate haustorium development via a signal mechanism initiated by redox cycling between quinone and hydroquinone states. Two cDNAs were previously isolated from roots of the parasitic plant Triphysaria versicolor that encode distinct quinone oxidoreductases. QR1 encodes a single-electron reducing NADPH quinone oxidoreductase similar to zeta-crystallin. The QR2 enzyme catalyzes two electron reductions typical of xenobiotic detoxification. QR1 and QR2 transcripts are upregulated in a primary response to chemical-inducing factors, but only QR1 was upregulated in response to host roots. RNA interference technology was used to reduce QR1 and QR2 transcripts in Triphysaria roots that were evaluated for their ability to form haustoria. There was a significant decrease in haustorium development in roots silenced for QR1 but not in roots silenced for QR2. The infrequent QR1 transgenic roots that did develop haustoria had levels of QR1 similar to those of nontransgenic roots. These experiments implicate QR1 as one of the earliest genes on the haustorium signal transduction pathway, encoding a quinone oxidoreductase necessary for the redox bioactivation of haustorial inducing factors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quinone oxidoreductase 2 is involved in haustorium development of the parasitic plant Phtheirospermum japonicum

The family Orobanchaceae includes many parasitic plant species. Parasitic plants invade host vascular tissues and form organs called haustoria, which are used to obtain water and nutrients. Haustorium formation is initiated by host-derived chemicals including quinones and flavonoids. Two types of quinone oxidoreductase (QR) are involved in signal transduction leading to haustorium formation; QR...

متن کامل

Quinone oxidoreductase message levels are differentially regulated in parasitic and non-parasitic plants exposed to allelopathic quinones.

Allelopathic chemicals released by plants into the rhizosphere have effects on neighboring plants ranging from phytoxicity to inducing organogenesis. The allelopathic activity of naturally occurring quinones and phenols is primarily a function of reactive radicals generated during redox cycling between quinone and hydroquinone states. We isolated cDNAs encoding two distinct quinone oxidoreducta...

متن کامل

The TvPirin gene is necessary for haustorium development in the parasitic plant Triphysaria versicolor.

The rhizosphere is teemed with organisms that coordinate their symbioses using chemical signals traversing between the host root and symbionts. Chemical signals also mediate interactions between roots of different plants, perhaps the most obvious being those between parasitic Orobanchaceae and their plant hosts. Parasitic plants use specific molecules provided by host roots to initiate the deve...

متن کامل

Heritable variation in quinone-induced haustorium development in the parasitic plant Triphysaria.

We are using the facultative hemiparasite, Triphysaria, as a model for studying host-parasite signaling in the Scrophulariaceae. Parasitic members of this family form subterranean connections, or haustoria, on neighboring host roots to access host water and nutrients. These parasitic organs develop in response to haustorial-inducing factors contained in host root exudates. A well-characterized ...

متن کامل

Transcriptional responses in the hemiparasitic plant Triphysaria versicolor to host plant signals.

Parasitic plants in the Scrophulariaceae use chemicals released by host plant roots to signal developmental processes critical for heterotrophy. Haustoria, parasitic plant structures that attach to and invade host roots, develop on roots of the hemiparasitic plant Triphysaria versicolor within a few hours of exposure to either maize (Zea mays) root exudate or purified haustoria-inducing factors...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 22 4  شماره 

صفحات  -

تاریخ انتشار 2010